

(844) 420-5227 http://www.brightsidesci.com Lic# C8-000038-LIC

Summary

Cannabinoids

Microbials

Mycotoxins

Heavy Metals Foreign Matter

Pesticides

Residual Solvents

Date Tested

04/15/2020

04/16/2020

04/16/2020

04/16/2020

04/15/2020

04/16/2020

04/16/2020

Test

Batch

1 of 4

Result

Complete

Complete

Pass

Pass

Pass

Pass

Pass

Pass

Sample ID: 2004BSD0331.0808

Matrix: Concentrates & Extracts Type: Cannabinoid Isolate Sample Size: 1 units; Batch: 1 units Produced: Collected: Received: 04/13/2020 Completed: 04/16/2020

Cannabinoids by HPLC-UV

Complete

ND		31.53%		31.53%
otal THC		Total CBD		Total Cannabinoids
LOQ	LOD	Result	Result	
%	%	%	mg/g	
0.00025	0.0001	ND	ND	
0.00025	0.0001	ND	ND	
0.00025	0.0001			
	0.00025 0.00025	LOQ LOD % % 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001 0.00025 0.0001	LOQ LOD Result % % % 0.00025 0.0001 ND 0.00025 0.0001 ND	LOQ LOD Result Result % % % mg/g 0.00025 0.0001 ND ND 0.00025 0.0001 ND ND

Total THC = THCa * $0.877 + \Delta 9$ -THC; Total CBD = CBDa * 0.877 + CBDLOQ = Limit of Quantitation, LOD = Limit of Detection, NR = Not Reported, NT = Not Tested, ND = Not Detected; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. ND means not detected by the level of detection <0.00%.

Moisture	Not Tested e Content by Moisture Analyzer	NT Not Tested Water Activity by Hygrometer	Pass Foreign Matter by Magnifying Glass		
	ISO 17025:2017 Accredited	Higawi Jake Hinaxi Patel Technical Director 04/16/2020	Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com		

All LQC samples required by section 5730 were performed and met the acceptance criteria. This product has been tested by Brightside Scientific using valid testing methodologies and a quality system as required by state law. Values reported relate only to the product tested. Brightside Scientific makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Brightside Scientific.

(844) 420-5227 http://www.brightsidesci.com Lic# C8-000038-LIC

Sample ID: 2004BSD0331.0808

Produced:

Matrix: Concentrates & Extracts Type: Cannabinoid Isolate Sample Size: 1 units; Batch: 1 units Collected: Received: 04/13/2020 Completed: 04/16/2020

Pesticides by LCMS/MS & GCMS/MS

Analyte	LOD	LOQ	Limit	Mass	Status	Analyte	LOD	LOQ	Limit	Mass	Status
	µg/g	µg/g	µg/g	µg/g			µg/g	µg/g	µg/g	µg/g	
Abamectin	0.01	0.1	0.1	ND	Pass	Fludioxonil	0.01	0.1	0.1	ND	Pass
Acephate	0.01	0.1	0.1	ND	Pass	Hexythiazox	0.01	0.1	0.1	ND	Pass
Acequinocyl	0.01	0.1	0.1	ND	Pass	Imazalil	0.01	0.1	0.01	ND	Pass
Acetamiprid	0.01	0.1	0.1	ND	Pass	Imidacloprid	0.01	0.1	5	ND	Pass
Aldicarb	0.01	0.1	0.01	ND	Pass	Kresoxim Methyl	0.01	0.1	0.1	ND	Pass
Azoxystrobin	0.01	0.1	0.1	ND	Pass	Malathion	0.01	0.1	0.5	ND	Pass
Bifenazate	0.01	0.1	0.1	ND	Pass	Metalaxyl	0.01	0.1	2	ND	Pass
Bifenthrin	0.01	0.1	3	ND	Pass	Methiocarb	0.01	0.1	0.01	ND	Pass
Boscalid	0.01	0.1	0.1	ND	Pass	Methomyl	0.01	0.1	1	ND	Pass
Captan	0.01	0.1	0.7	ND	Pass	Mevinphos	0.01	0.1	0.01	ND	Pass
Carbaryl	0.01	0.1	0.5	ND	Pass	Myclobutanil	0.01	0.1	0.1	ND	Pass
Carbofuran	0.01	0.1	0.01	ND	Pass	Naled	0.01	0.1	0.1	ND	Pass
Chlorantraniliprole	0.01	0.1	10	ND	Pass	Oxamyl	0.01	0.1	0.5	ND	Pass
Chlordane	0.01	0.1	0.01	ND	Pass	Paclobutrazol	0.01	0.1	0.01	ND	Pass
Chlorfenapyr	0.01	0.1	0.01	ND	Pass	Parathion Methyl	0.01	0.1	0.01	ND	Pass
Chlorpyrifos	0.01	0.1	0.01	ND	Pass	Pentachloronitrobenzene	0.01	0.1	0.1	ND	Pass
Clofentezine	0.01	0.1	0.1	ND	Pass	Permethrin	0.01	0.1	0.5	ND	Pass
Coumaphos	0.01	0.1	0.01	ND	Pass	Phosmet	0.01	0.1	0.1	ND	Pass
Cyfluthrin	0.01	0.1	2	ND	Pass	Piperonyl Butoxide	0.01	0.1	3	ND	Pass
Cypermethrin	0.01	0.1	1	ND	Pass	Prallethrin	0.01	0.1	0.1	ND	Pass
Daminozide	0.01	0.1	0.01	ND	Pass	Propiconazole	0.01	0.1	0.1	ND	Pass
Diazinon	0.01	0.1	0.1	ND	Pass	Propoxur	0.01	0.1	0.01	ND	Pass
Dichlorvos	0.01	0.1	0.01	ND	Pass	Pyrethrins	0.01	0.1	0.5	ND	Pass
Dimethoate	0.01	0.1	0.01	ND	Pass	Pyridaben	0.01	0.1	0.1	ND	Pass
Dimethomorph	0.01	0.1	2	ND	Pass	Spinetoram	0.01	0.1	0.1	ND	Pass
Ethoprophos	0.01	0.1	0.01	ND	Pass	Spinosad	0.01	0.1	0.1	ND	Pass
Etofenprox	0.01	0.1	0.01	ND	Pass	Spiromesifen	0.01	0.1	0.1	ND	Pass
Etoxazole	0.01	0.1	0.1	ND	Pass	Spirotetramat	0.01	0.1	0.1	ND	Pass
Fenhexamid	0.01	0.1	0.1	ND	Pass	Spiroxamine	0.01	0.1	0.01	ND	Pass
Fenoxycarb	0.01	0.1	0.01	ND	Pass	Tebuconazole	0.01	0.1	0.1	ND	Pass
Fenpyroximate	0.01	0.1	0.1	ND	Pass	Thiacloprid	0.01	0.1	0.01	ND	Pass
Fipronil	0.01	0.1	0.01	ND	Pass	Thiamethoxam	0.01	0.1	5	ND	Pass
Flonicamid	0.01	0.1	0.1	ND	Pass	Trifloxystrobin	0.01	0.1	0.1	ND	Pass

Date Tested: 04/15/2020

LOQ = Limit of Quantitation; NT = Not Tested; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

All LQC samples required by section 5730 were performed and met the acceptance criteria. This product has been tested by Brightside Scientific using valid testing methodologies and a quality system as required by state law. Values reported relate only to the product tested. Brightside Scientific makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Brightside Scientific.

Pass

Sample ID: 2004BSD0331.0808

Produced:

Matrix: Concentrates & Extracts Type: Cannabinoid Isolate Sample Size: 1 units; Batch: 1 units Collected: Received: 04/13/2020 Completed: 04/16/2020

Microbials by qPCR/Microbial Agar Culture

Analyte	Result	Status
Aspergillus flavus	Not Detected in 1g	Pass
Aspergillus fumigatus	Not Detected in 1g	Pass
Aspergillus niger	Not Detected in 1g	Pass
Aspergillus terreus	Not Detected in 1g	Pass
Shiga toxin-producing E. Coli	Not Detected in 1g	Pass
Salmonella SPP	Not Detected in 1g	Pass

(844) 420-5227

Lic# C8-000038-LIC

http://www.brightsidesci.com

Date Tested: 04/16/2020

Unless otherwise stated all quality control samples performed within specifications established by the Laboratory

Mycotoxins by LCMS/MS

Analyte	LOD	LOQ	Limit	Units	Status
	µg/kg	µg/kg	µg/kg	µg/kg	
B1	0.5	1		ND	Tested
B2	0.5	1		ND	Tested
G1	0.5	1		ND	Tested
G2	0.5	1		ND	Tested
Total Aflatoxins			20	ND	Pass
Ochratoxin A	0.5		20	ND	Pass

Date Tested: 04/16/2020

LOQ = Limit of Quantitation; NT = Not Tested; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

Heavy Metals by ICP-MS					Pass
Analyte	LOD	LOQ	Limit	Units	Status
	µg/g	µg/g	µg/g	µg/g	
Arsenic	0.0000697	0.000697	0.2	ND	Pass
Cadmium	0.0001964	0.001964	0.2	ND	Pass
Lead	0.0002727	0.000727	0.5	0.0074	Pass
Mercury	0.0002221	0.002221	0.1	<loq< td=""><td>Pass</td></loq<>	Pass

Date Tested: 04/16/2020

LOQ = Limit of Quantitation; NT = Not Tested; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

All LQC samples required by section 5730 were performed and met the acceptance criteria. This product has been tested by Brightside Scientific using valid testing methodologies and a quality system as required by state law. Values reported relate only to the product tested. Brightside Scientific makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Brightside Scientific.

04/16/2020

Pass

Pass

(844) 420-5227 http://www.brightsidesci.com Lic# C8-000038-LIC

Sample ID: 2004BSD0331.0808

Produced: Collected:

Matrix: Concentrates & Extracts	Received: 04/13/2020
Type: Cannabinoid Isolate	Completed: 04/16/2020
Sample Size: 1 units; Batch: 1 units	Batch#: NTXL32620

Residual Solvents by GCMS/MS & GC-FID

Analyte	LOD	LOQ	Limit	Mass	Status
	µg/g	µg/g	µg/g	µg/g	
1,2-Dichloro-Ethane	0.005	0.01	1	NT	NT
Acetone	0.005	0.01	5000	NT	NT
Acetonitrile	0.005	0.01	410	NT	NT
Benzene	0.005	0.01	1	NT	NT
Butane	0.005	0.01	5000	NT	NT
Chloroform	0.005	0.01	1	NT	NT
Ethanol	0.005	0.01	5000	NT	NT
Ethyl-Acetate	0.005	0.01	5000	NT	NT
Ethyl-Ether	0.005	0.01	5000	NT	NT
Ethylene Oxide	0.005	0.01	1	NT	NT
Heptane	0.005	0.01	5000	NT	NT
Isopropanol	0.005	0.01	5000	NT	NT
Methanol	0.005	0.01	3000	NT	NT
Methylene-Chloride	0.005	0.01	1	NT	NT
n-Hexane	0.005	0.01	290	NT	NT
Pentane	0.005	0.01	5000	NT	NT
Propane	0.005	0.01	5000	NT	NT
Toluene	0.005	0.01	890	NT	NT
Trichloroethene	0.005	0.01	1	NT	NT
Xylenes	0.005	0.01	2170	NT	NT

Date Tested: 04/16/2020

LOQ = Limit of Quantitation; NT = Not Tested; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

Hinaxi Patel Technical Director 04/16/2020

Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

Complete

4 of 4

All LQC samples required by section 5730 were performed and met the acceptance criteria. This product has been tested by Brightside Scientific using valid testing methodologies and a quality system as required by state law. Values reported relate only to the product tested. Brightside Scientific makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Brightside Scientific.